skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Xiuliang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Crosson, Sean (Ed.)
    Quorum sensing is a chemical communication process that bacteria use to coordinate group behaviors. In the global pathogen Vibrio cholerae , one quorum-sensing receptor and transcription factor, called VqmA (VqmA Vc ), activates expression of the vqmR gene encoding the small regulatory RNA VqmR, which represses genes involved in virulence and biofilm formation. Vibriophage VP882 encodes a VqmA homolog called VqmA Phage that activates transcription of the phage gene qtip , and Qtip launches the phage lytic program. Curiously, VqmA Phage can activate vqmR expression but VqmA Vc cannot activate expression of qtip . Here, we investigate the mechanism underlying this asymmetry. We find that promoter selectivity is driven by each VqmA DNA-binding domain and key DNA sequences in the vqmR and qtip promoters are required to maintain specificity. A protein sequence-guided mutagenesis approach revealed that the residue E194 of VqmA Phage and A192, the equivalent residue in VqmA Vc , in the helix-turn-helix motifs contribute to promoter-binding specificity. A genetic screen to identify VqmA Phage mutants that are incapable of binding the qtip promoter but maintain binding to the vqmR promoter delivered additional VqmA Phage residues located immediately C-terminal to the helix-turn-helix motif as required for binding the qtip promoter. Surprisingly, these residues are conserved between VqmA Phage and VqmA Vc . A second, targeted genetic screen revealed a region located in the VqmA Vc DNA-binding domain that is necessary to prevent VqmA Vc from binding the qtip promoter, thus restricting DNA binding to the vqmR promoter. We propose that the VqmA Vc helix-turn-helix motif and the C-terminal flanking residues function together to prohibit VqmA Vc from binding the qtip promoter. 
    more » « less
  2. Quorum sensing is a bacterial communication process whereby bacteria produce, release, and detect extracellular signaling molecules called autoinducers to coordinate collective behaviors. In the pathogen Vibrio cholerae, the quorum-sensing autoinducer 3,5-dimethyl-pyrazin-2-ol (DPO) binds the receptor and transcription factor VqmA. The DPO-VqmA complex activates transcription of vqmR, encoding the VqmR small RNA, which represses genes required for biofilm formation and virulence factor production. Here, we show that VqmA is soluble and properly folded, and activates basal-level transcription of its target vqmR in the absence of DPO. VqmA transcriptional activity is increased in response to increasing concentrations of DPO, allowing VqmA to drive the V. cholerae quorum-sensing transition at high cell densities. We solved the DPO-VqmA crystal structure to 2.0 Å resolution and compared it to existing structures to understand the conformational changes VqmA undergoes upon DNA binding. Analysis of DPO analogs showed that a hydroxyl or carbonyl group at the 2’ position is critical for binding to VqmA. The proposed DPO precursor, a linear molecule, N-alanyl-aminoacetone or Ala-AA, also bound and activated VqmA. Results from site-directed mutagenesis and competitive ligand-binding analyses revealed that DPO and Ala-AA occupy the same binding site. In summary, our structure–function analysis identifies key features required for VqmA activation and DNA binding and establishes that, while VqmA binds two different ligands, VqmA does not require a bound ligand for folding or basal transcriptional activity. However, bound ligand is required for maximal activity. 
    more » « less